SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Khotyaintsev Yuri) ;pers:(Argall M. R.);srt2:(2017)"

Search: WFRF:(Khotyaintsev Yuri) > Argall M. R. > (2017)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Le Contel, O., et al. (author)
  • Lower Hybrid Drift Waves and Electromagnetic Electron Space-Phase Holes Associated With Dipolarization Fronts and Field-Aligned Currents Observed by the Magnetospheric Multiscale Mission During a Substorm
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 12236-12257
  • Journal article (peer-reviewed)abstract
    • We analyze two ion scale dipolarization fronts associated with field-aligned currents detected by the Magnetospheric Multiscale mission during a large substorm on 10 August 2016. The first event corresponds to a fast dawnward flow with an antiparallel current and could be generated by the wake of a previous fast earthward flow. It is associated with intense lower hybrid drift waves detected at the front and propagating dawnward with a perpendicular phase speed close to the electric drift and the ion thermal velocity. The second event corresponds to a flow reversal: from southwward/dawnward to northward/duskward associated with a parallel current consistent with a brief expansion of the plasma sheet before the front crossing and with a smaller lower hybrid drift wave activity. Electromagnetic electron phase-space holes are detected near these low-frequency drift waves during both events. The drift waves could accelerate electrons parallel to the magnetic field and produce the parallel electron drift needed to generate the electron holes. Yet we cannot rule out the possibility that the drift waves are produced by the antiparallel current associated with the fast flows, leaving the source for the electron holes unexplained.
  •  
2.
  • Matsui, H., et al. (author)
  • Relativistic Electron Increase During Chorus Wave Activities on the 6-8 March 2016 Geomagnetic Storm
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:11, s. 11302-11319
  • Journal article (peer-reviewed)abstract
    • There was a geomagnetic storm on 6-8 March 2016, in which Van Allen Probes A and B separated by similar to 2.5 h measured increase of relativistic electrons with energies approximately several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equation. From this theory, a chorus wave profile in time and one-dimensional space is simulated. Test particle calculations are then performed in order to examine the energization rate of electrons. Some electrons are accelerated, although more electrons are decelerated. The measured time scale of the electron increase is inferred to be consistent with this nonlinear theory.
  •  
3.
  • Alm, L., et al. (author)
  • EDR signatures observed by MMS in the 16 October event presented in a 2-D parametric space
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:3, s. 3262-3276
  • Journal article (peer-reviewed)abstract
    • We present a method for mapping the position of satellites relative to the X line using the measured B-L and B-N components of the magnetic field and apply it to the Magnetospheric multiscale (MMS) encounter with the electron diffusion region (EDR) which occurred on 13:07 UT on 16 October 2015. Mapping the data to our parametric space succeeds in capturing many of the signatures associated with magnetic reconnection and the electron diffusion region. This offers a method for determining where in the reconnection region the satellites were located. In addition, parametric mapping can also be used to present data from numerical simulations. This facilitates comparing data from simulations with data from in situ observations as one can avoid the complicated process using boundary motion analysis to determine the geometry of the reconnection region. In parametric space we can identify the EDR based on the collocation of several reconnection signatures, such as electron nongyrotropy, electron demagnetization, parallel electric fields, and energy dissipation. The EDR extends 2-3km in the normal direction and in excess of 20km in the tangential direction. It is clear that the EDR occurs on the magnetospheric side of the topological X line, which is expected in asymmetric reconnection. Furthermore, we can observe a north-south asymmetry, where the EDR occurs north of the peak in out-of-plane current, which may be due to the small but finite guide field.
  •  
4.
  • Farrugia, C. J., et al. (author)
  • MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvénic Flow
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing Ltd. - 2169-9380 .- 2169-9402. ; 122:10, s. 9934-9951
  • Journal article (peer-reviewed)abstract
    • We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvénic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (∼20 nT) pointing south and (ii) a density profile with episodic decreases to values of ∼0.3 cm−3 followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of ∼2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfvén waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Te⊥>Te∥) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walén relation.
  •  
5.
  • Oka, M., et al. (author)
  • Electron Scattering by High-frequency Whistler Waves at Earth's Bow Shock
  • 2017
  • In: Astrophysical Journal Letters. - : Institute of Physics Publishing (IOPP). - 2041-8205 .- 2041-8213. ; 842:2
  • Journal article (peer-reviewed)abstract
    • Electrons are accelerated to non-thermal energies at shocks in space and astrophysical environments. While different mechanisms of electron acceleration have been proposed, it remains unclear how non-thermal electrons are produced out of the thermal plasma pool. Here, we report in situ evidence of pitch-angle scattering of nonthermal electrons by whistler waves at Earth's bow shock. On 2015 November 4, the Magnetospheric Multiscale (MMS) mission crossed the bow shock with an Alfvn Mach number similar to 11 and a shock angle similar to 84 degrees. In the ramp and overshoot regions, MMS revealed bursty enhancements of non-thermal (0.5-2 keV) electron flux, correlated with high-frequency (0.2-0.4 Omega(ce), where Omega(ce) is the cyclotron frequency) parallel-propagating whistler waves. The electron velocity distribution (measured at 30 ms cadence) showed an enhanced gradient of phase-space density at and around the region where the electron velocity component parallel to the magnetic field matched the resonant energy inferred from the wave frequency range. The flux of 0.5 keV electrons (measured at 1 ms cadence) showed fluctuations with the same frequency. These features indicate that non-thermal electrons were pitch-angle scattered by cyclotron resonance with the high-frequency whistler waves. However, the precise role of the pitch-angle scattering by the higher-frequency whistler waves and possible nonlinear effects in the electron acceleration process remains unclear.
  •  
6.
  • Torbert, R. B., et al. (author)
  • Structure and Dissipation Characteristics of an Electron Diffusion Region Observed by MMS During a Rapid, Normal-Incidence Magnetopause Crossing
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 122:12, s. 11901-11916
  • Journal article (peer-reviewed)abstract
    • On 22 October 2016, the Magnetospheric Multiscale (MMS) spacecraft encountered the electron diffusion region (EDR) when the magnetosheath field was southward, and there were signatures of fast reconnection, including flow jets, Hall fields, and large power dissipation. One rapid, normal-incidence crossing, during which the EDR structure was almost stationary in the boundary frame, provided an opportunity to observe the spatial structure for the zero guide field case of magnetic reconnection. The reconnection electric field was determined unambiguously to be 2-3 mV/m. There were clear signals of fluctuating parallel electric fields, up to 6 mV/m on the magnetosphere side of the diffusion region, associated with a Hall-like parallel current feature on the electron scale. The width of the main EDR structure was determined to be similar to 2 km (1.8 de). Although the MMS spacecraft were in their closest tetrahedral separation of similar to 8 km, the divergences and curls for these thin current structures could therefore not be computed in the usual manner. A method is developed to determine these quantities on a much smaller scale and applied to compute the normal component of terms in the generalized Ohm's law for the positions of each individual spacecraft (not a barocentric average). Although the gradient pressure term has a qualitative dependence that follows the observed variation of E + Ve x B, the quantitative magnitude of these terms differs by more than a factor of 2, which is shown to be greater than the respective errors. Thus, future research is required to find the manner in which Ohm's law is balanced. Plain Language Summary The Magnetospheric Multiscale (MMS) spacecraft observed the spatial structure of the region where magnetic energy is converted to particle flows and heat. New features of currents and fields parallel to the magnetic field are analyzed. Some discrepancies with present computer simulations are found within this region.
  •  
7.
  • Wilder, F. D., et al. (author)
  • The nonlinear behavior of whistler waves at the reconnecting dayside magnetopause as observed by the Magnetospheric Multiscale mission : A case study
  • 2017
  • In: Journal of Geophysical Research - Space Physics. - : Blackwell Publishing Ltd. - 2169-9380 .- 2169-9402. ; 122:5, s. 5487-5501
  • Journal article (peer-reviewed)abstract
    • We show observations of whistler mode waves in both the low-latitude boundary layer (LLBL) and on closed magnetospheric field lines during a crossing of the dayside reconnecting magnetopause by the Magnetospheric Multiscale (MMS) mission on 11 October 2015. The whistlers in the LLBL were on the electron edge of the magnetospheric separatrix and exhibited high propagation angles with respect to the background field, approaching 40°, with bursty and nonlinear parallel electric field signatures. The whistlers in the closed magnetosphere had Poynting flux that was more field aligned. Comparing the reduced electron distributions for each event, the magnetospheric whistlers appear to be consistent with anisotropy-driven waves, while the distribution in the LLBL case includes anisotropic backward resonant electrons and a forward resonant beam at near half the electron-Alfvén speed. Results are compared with the previously published observations by MMS on 19 September 2015 of LLBL whistler waves. The observations suggest that whistlers in the LLBL can be both beam and anisotropy driven, and the relative contribution of each might depend on the distance from the X line.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view